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Quantum Electrodynamics of Čerenkov Radiation
at Finite Temperature
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An exact, to order a, study of Čerenkov radiation in QED is carried out at finite
temperatures T Þ 0 in isotropic homogeneous media for the first time. By avoiding
the method of combining denominators of Feynman propagators in parametric
form, which has led to approximations in the past due to the complexity of the
resulting integrals, we use instead a complex integration method and automatically
evaluate the "2v2/E 2 contribution to the quantum power spectrum and settle the
ambiguity associated with this term which has been known to exist at T 5 0.
We show that complex integration over a so-called pinching singularity actually
simplifies the problem tremendously over the usual method of combining the
denominators of the propagators. In particular, the imaginary part of the electron
self-energy satisfies the correct underlying boundary condition and no contact
term is needed in its evaluation. QED, unlike its classical counterpart, introduces
automatically a cutoff for higher frequencies, emphasizing the importance of the
quantum treatment.

1. INTRODUCTION

The history of Čerenkov radiation began with its discovery in 1936
(Čerenkov, 1936; see also Čerenkov, 1934) and its first theoretical explanation
in 1937 (Tamm and Frank, 1937). Recent years, have seen numerous experi-
mental studies (e.g., Wang et al., 1991; Garate et al., 1990; Efimov and
Skurov, 1979; Hartman et al., 1979), applications (Ferbel, 1987; Prothers
and Patterson, 1984), and theoretical investigations for radiating particles
(Manoukian and Bantitadawit, 1999, Manoukian et al. 1997a,b, Šoln, 1997;
Zhevago and Glebov, 1997; Orisa, 1995; Manoukian, 1994, 1993; Pratap et
al. 1993; Fulop, 1993; Ginzburg et al., 1993; Manoukian, 1991; Pardy, 1989;
Schwinger et al., 1976) and strings (Manoukian, 1991). In simplest terms,
Čerenkov radiation is the radiation emitted by a charged particle in a medium
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when its speed exceeds the speed of light in the medium. Although most
recent theoretical studies have been classical, many have also dealt at the
quantum level (e.g., Orisa, 1995; Fulop, 1993; Schwinger et al., 1976; Kong,
1975) following earlier attempts (Tidman, 1956; Taniuti, 1951; Beck, 1948;
Sokolov, 1940) at the quantum level. One of the clearest and most detailed
quantum treatments of the problem is that of Schwinger et al. (1976). The
latter deals with the full QED, to order a, in an isotropic homogeneous medium
at T 5 0. Unfortunately, due to the method of combining the denominators of
the propagators in parametric form, the resulting integrals are exceedingly
complicated and approximations were necessarily made. This left, in particu-
lar, the contribution "2v2/E 2 to the quantum correction undetermined. The
ambiguity associated with the latter part of the quantum correction is well
known.

The purpose of this work is to carry out to order a with no further
approximations a study of the power for Čerenkov radiation emission in QED
at finite (e.g., Manoukian, 1990) temperatures T Þ 0 for the first time and
in the process obtain the full quantum correction to the spectrum in an
isotropic homogeneous medium. We use the method of complex integration
directly on the electron self-energy without combining the denominators of
the underlying propagators. This, as we will see, simplifies the problem
tremendously over the more conventional method of combining denominators
of the propagators in parametric form. This allows us to obtain a closed
expression for the integral in question for the power. We justify rigorously
integrating over the complex domain by deriving lower bounds on the singu-
larities involved through Lemmas 1 and 2. The method of complex integration
brings us into contact with studies of the analytical properties of Feynman
diagrams (e.g., Cutkosky, 1960; Mandelstam, 1958; Eden et al., 1966) dealing
with so-called pinching singularities, as will be discussed in the text. The
imaginary part of the self-energy of the electron satisfies the correct underlying
boundary condition and no contact term needs to be introduced. The inclusion
of temperature in quantum field theory (e.g., Manoukian, 1990; Ahmed and
Masood, 1991; Johansson et al., 1986; Bechler, 1981) is well known, but to
our knowledge, this has not been carried out in the QED of Čerenkov radiation.
Also in the present problem, one is involved in evaluating the imaginary
rather than the real part of a self-energy. Although quantum effects may be
difficult to detect, one of the most pleasing aspects of the quantum treatment
is that QED, unlike its classical counterpart, introduces automatically a cutoff
for higher frequencies beyond which the power is necessarily zero, as empha-
sized in the text. Section 2 deals in detail with the intricacies of the T 5 0
case. Section 3 then extends the theory to finite temperatures. Our notation
is summarized in the Appendix.
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2. POWER SPECTRUM IN QED: T 5 0

The expression for the decay rate of an electron in a medium is given
by (Schwinger et al., 1976)

G 5 2
2m
E

Im(u Su) (2.1)

where u is a Dirac spinor (see Appendix) and S is the electron self-energy
in a medium

S( p) 5 ie2 # (dq)
(2p)4 Tr[gaS( p 2 q)gb]Dab(q), ε → 10 (2.2)

where

S( p 2 q) 5
2g( p 2 q) 1 m

( p 2 q)2 1 m2 2 iε
, p2 1 m2 5 0 (2.3)

is the electron propagator and

Dab(q) 5 m
[gab 1 (1 2 1/n2)hahb

›
q 2 2 n2q02

2 ie
(2.4)

is the photon propagator in the Lorentz gauge, ha 5 (1,
›

0) is a timelike unit
vector, with m and n 5 !mk denoting, respectively, the permeability and the
index of refraction of the medium.

To obtain the power spectrum for photon emission each with energy v,
we insert in (2.2) the identity operation

1 5 #
`

0

dv d1v 2
.

›
q .
n 2 (2.5)

leading to the following expression for the power spectrum:

P(v) 5 2
2m
E

nvme2 # (dq)
(2p)4 d(.

›
q . 2 nv) ImFiuNu

D G (2.6)

where

N 5 ga(2g( p 2 q) 1 m)gbFgab 1 11 2
1
n22hahbG (2.7)

and

D 5 (q2 2 2pq 2 iε)(
›

q 2 2 n2q02
2 iε) (2.8)

Carrying out the .
›

q . and the angular f integrations in (2.6) gives
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P(v) 5 2
2m
E

v3mne2 (2p)
(2p)4 #

1

21

d(cos u) #
`

2`

dq0 ImFi
uNu
Dε
G (2.9)

with

uNu 5
2E 2b2

m H1 2
1

n2b2 2
q0

2b2E 13 2
1
n22 1

nv
2Eb 11 1

1
n22 cos uJ

(2.10)

Here b 5 .
›

p . / E 5 v/c for the electron of energy E and

Dε 5 [q02
2 2q0E 2 n2v2 1 2nbvE cos u 1 iε][q02

2 v2 1 iε] (2.11)

The 1iε rather than 2iε occurs in Dε as we have factored out a minus sign
from each of the two products in (2.8). We have also factored out n2 from
the second factor in (2.8).

We consider the singularities occurring in 1/Dε. To this end, the roots
of Dε 5 0 as a function of q0 are

q0
16 5 E(1 6 A(u)) 7 iε (2.12)

q0
26 5 6 v 7 iε (2.13)

where

A2(u) 5 11 1
n2v2

E 2 2 2nb
v
E

cos u2 . 0 (2.14)

and for 0 # b , 1, A2(u) is strictly positive as indicated. This is as a
consequence of the following result:

Lemma 1. For 0 # b , 1,

A(u) $ !1 2 b2 . 0 (2.15)

for all u in [0, p].

To establish (2.15), we note that

A2(u) 5 1 1
n2v2

E 2 2 2nb
v
E

cos u

$ 1 1
n2v2

E 2 2 2nb
v
E

(2.16)

Let nv/E 5 x. Then the right-hand side of the above inequality is f (x) 5 1
1 x2 2 2xb. It is easily verified that the minimum of f(x) occurs for x 5 b,
i.e., A2(u) $ 1 2 b2 . 0.
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We also need the following result:

Lemma 2. For n . 1, 0 # b , 1,

E(1 1 A(u)) . v (2.17)

for all 0 # u # p as a strict inequality.

To prove this, suppose the converse is true. That is, as an initial hypothesis
suppose that

v $ E(1 1 A(u)) (2.18)

for some u in [0, p]. Let v/E 5 x. Then (2.18) implies that

x $ 1 1 A(u) . 1 (2.19)

where we have used Lemma 1. That is,

x 2 1 $ A(u) . 0 (2.20)

Upon squaring the latter, this leads to the inequality

2nbx cos u $ (n2 2 1)x2 1 2x (2.21)

or

cos u $
1

nb F1 1
n2 2 1

2
xG .

1
nb F1 1

n2 2 1
2 G

5
n2 1 1

2nb
.

1
b

. 1 (2.22)

where in the first strict inequality we used (2.19), and the next one follows
from n2 1 1 . 2n for n . 1. The contradictory statement in (2.22) for a
cosine function implies that the initial hypothesis in (2.18) is false for all u
in [0, p]. That is, since E(1 1 A(u)) is some real number it must satisfy (2.17).

We rewrite Dε as

Dε 5 (q0 2 q0
11) (q0 2 q0

12) (q0 2 q0
21) (q0 2 q0

22) (2.23)

We close the q0-contour in the complex q0-plane from below (clockwise) by
noting that Dε has enough powers in q0 to make sure that the infinite semicircle
gives no contribution to the resulting integral. The poles in the lower complex
plane are q0

11 and q0
21.

From the residue theorem, we have for the integral
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#
`

2`

dq0 FiuNu
Dε

G 5 2pFuNu.q05q0
11

D1ε
1

uNu.q05q0
21

D2ε
G, ε → 1 0

(2.24)

where

D1ε 5 (q0
11 2 q0

12)(q0
11 2 q0

21)(q0
11 2 q0

22) (2.25)

D2ε 5 (q0
21 2 q0

11)(q0
21 2 q0

12)(q0
21 2 q0

22) (2.26)

We explicitly have

lim
ε→10

D1ε 5 2A(u)E[E 2(1 1 A(u))2 2 v2] Þ 0 (.0) (2.27)

by using Lemmas 1 and 2. That is, in the limit ε → 10, the first term in
(2.24) is real and gives no contribution to P(v) in (2.9).

For D2ε, we explicitly obtain

D2ε 5 2(v 2 iε){(v 2 E )2 2 E 2A2(u) 2 i[v 2 E(1 1 A(u))]ε} (2.28)

Since by Lemma 2, v , E(1 1 A(u)) as a strict inequality, this gives an
overall 1 sign to the coefficient of iε in the second factor in (2.28):

D2ε 5 2(v 2 iε)[(v 2 E )2 2 E 2A2(u) 1 iε] (2.29)

In detail,

D2ε 5 2(v 2 iε)[v2 2 2vE 2 n2v2 1 2nvEb cos u 1 iε] (2.30)

and for vE . 0, we have

Im1 1
D2ε2 5 2

1
4nv2Eb

d1cos u 2
1

nb 11 1
n2 2 1

2
v
E22, ε → 10

(2.31)

The delta function over cos u puts the following constraint for the
nonvanishing of P(v) in (2.9):

nb . 1 1
n2 2 1

2
v
E

(2.32)

At q0 5 v, the delta function over cos u leads to

uNu 5
2E 2b2

m H1 2
1

n2b2 11 1
v
E

(n2 2 1)2 1
v2

4E 2

n4 2 1
n2b2 J (2.33)

All told, we have for the power in (2.9)
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P(v) 5 avbmH1 2
1

n2b2 11 1
v
E

(n2 2 1)2 1
v2

4E 2

n4 2 1
n2b2 J

(2.34)

where a 5 e2/4p. Equation (2.34) is valid with the threshold condition
given through (2.32) for the emission of radiation. The task, however, is not
complete. It remains to verify that P(v) is indeed strictly positive under this
constraint and that no further restrictions are necessary. To this end, we note
that (2.34) may be rewritten in the more convenient form

P(v) 5 avbmH1 2
1

n2b2 11 1
v
2E

(n2 2 1)2
2

1
v2

2E 2

n2 2 1
b2 J

(2.35)

and with the constraint in (2.32), there is no question of the strict positivity
of P(v) for v . 0. Finally we note that for n 5 1, the statement in (2.32)
is empty and no contact term was needed to derive the expression for P(v)
in (2.35).

It is interesting to dwell further on why the pole at q0
21 5 v 2 iε contrib-

utes and the pole at q0
11 5 E(1 1 A(u)) 2 iε does not. To this end, we note

that the condition E(1 2 A(u)) 5 v is in the domain of integration over cos
u. Accordingly, at this point, the upper pole q0

12 is just above the lower pole
q0

21. For ε → 10 they pinch the q0-contour and no deformation of the latter
is possible at this point to avoid the q0

21 pole in the lower complex plane.
The poles q0

12 and q0
22, however, never coincide with q0

11 for ε → 10
according to Lemmas 1 and 2.

3. POWER SPECTRUM IN QED: T Þ 0

The inclusion of temperature amounts in the following replacements:

(( p 2 q)2 1 m2 2 iε)21

→ (( p 2 q)2 1 m2 2 iε)21

2 2pi d(( p 2 q)2 1 m2)(1 1 exp r!(
›

p 2
›

k )2 1 m2)21 (3.1)

(
›

q 2 2 n2q02
2 iε)21

→ (
›

q 2 2 n2q02
2 iε)21

2 2pi d(
›

q 2 2 n2q02
)(1 2 exp r.q0.)21 (3.2)

in the denominators of the propagators in question, where r 5 1/kT and k
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is the Boltzmann constant. To obtain the temperature correction DTP(v) for
radiation emission to the integrals (2.6), (2.9), we use

d(q02
2 v2) 5

1
2v

[d(q0 2 v) 1 d(q0 1 v)] (3.3)

DTP(v) for radiation emission of frequency v . 0 is then

DTP(v) 5 2
m
E

nv2me2 2p
(2p)4 #

1

21

d(cos u) #
`

2`

dq0 [uNu] 3 (i)(22pi)(2p)

3 d(q02
2 n2v2 1 2nbEv cos u 2 2 Eq0) d(q0 2 v)FT (q0)

(3.4)

where

FT (q0) 5 1–2(1 2 exp rv)21 1 1–2(1 1 exp r!E 2 1 v2 2 2Eq0)21

2 (1 2 exp rv)21(1 1 exp r!E 2 1 v2 2 2Eq0)21 (3.5)

The delta function over cos u in (3.4) sets the threshold condition (2.32) as
before. Upon integrating out (3.4) and adding the resulting integral to the
expression in (2.35), we obtain for the power spectrum of photon emission

PT(v) 5 avbmH1 2
1

n2b2 11 1
v
2E

(n2 2 1)2
2

1
v2

2E 2

n2 2 1
b2 JAT(v)

(3.6)

where

AT(v) 5
ev/kT

ev/kT 2 1 Fexp (.E 2 v./kT) 2 exp (2v/kT)
(exp (.E 2 v./kT) 1 1) G (3.7)

which is strictly positive, with (3.6) holding only with the threshold condition

nb . 1 1 (n2 2 1)v/2E (3.8)

satisfied, otherwise PT(v) is zero.
For given 0 , b , 1, n . 1 (with necessarily nb . 1), Eq. (3.8)

provides a cutoff for higher frequencies:

v , vc (3.9)
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with

vc 5 2
nb 2 1
(n2 2 1)

E 5
2(nb 2 1)
(n2 2 1)

m

!1 2 b2
(3.10)

beyond which the power of radiation emission is zero. This cutoff upper
limit vc is still bounded above by the electron energy E. That is, v , E, a
result which is expected on physical grounds. The proof of the latter bound
follows from the following inequalities:

vc 5 2
nb 2 1
n2 2 1

E , 2
n 2 1
n2 2 1

E 5
2

n 1 1
E , E (3.11)

since (n 1 1) . 2. That is, necessarily, v , E. The latter also means that
the absolute value sign in .E 2 v. appearing in (3.7) may be removed.

The coefficient AT(v) has the following asymptotic behavior at low
temperatures kT ¿ v and at high temperatures kt À E, respectively:

AT(v) , 1 (3.12)

AT(v) , E
2v

(3.13)

In particular,

PT(v) ,
kTÀE

abmE
2 H1 2

1
n2b2 11 1

v
2E

(n2 2 1)2
2

1
v2

2E 2

n2 2 1
b2 J

(3.14)

and the power of emission is enhanced for v , E/2 and suppressed for E/2 ,
v , E at high temperatures.

APPENDIX

Our notation is " 5 1, c 5 1, gmn 5 diag[21, 1, 1, 1]; {gm, gn} 5
22gmn, (gp 1 m)u 5 0, uu 5 1, u†u 5 p0 /m; gmgsgm 5 2gs, gmgm 5
24I, u

›
gu 5

›
p /m.
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